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Abstract— Various research topics are emerging as the de-
mand for intelligent lifelong interactions between robot and
humans increases. Among them, we can find the examination
of persistent storage, the continuous unsupervised annotation of
memories and the usage of data at high-frequency over long pe-
riods of time. We recently proposed a lifelong autobiographical
memory architecture tackling some of these challenges, allowing
the iCub humanoid robot to 1) create new memories for both
actions that are self-executed and observed from humans, 2)
continuously annotate these actions in an unsupervised manner,
and 3) use reasoning modules to augment these memories a-
posteriori. In this paper, we present a reasoning algorithm which
generalises the robots’ understanding of actions by finding the
point of commonalities with the former ones. In particular, we
generated and labelled templates of pointing actions in different
directions. This represents a first step towards the emergence
of a procedural memory within a long-term autobiographical
memory framework for robots.

I. INTRODUCTION

Various studies have shown that cognitive robots can
significantly benefit from a multi-modal long-term memory;
for example in the context of navigation planning [1], adaptive
assistance [2], and cooperative task learning [3]. According
to [4], robots can benefit from taking their procedural
and episodic memories into consideration when choosing
appropriate actions according to previous experiences, in the
same way as humans do [5]. Furthermore, we subscribe to the
view that memory should be considered as an active cognitive
component [6]: agents constantly use their own memories to
find patterns among them, leading to the generalisation of
e.g. actions concepts.

Previously, we have proposed an autobiographical multi-
modal memory framework for cognitive robots to store,
augment, and recall streaming episodes [7]. We have shown
that this enables autonomous robots to 1) learn from self
exploration and social interaction using motor babbling and
imitation, and 2) to aid computer vision algorithms which
are not currently able to run in real-time to contribute to the
analysis and augmentation of streaming data (e.g. [8]). Other
examples for the usage of the framework are the hierarchical
learning of actions, which requires new knowledge to be
built upon previously acquired information [9]; as well as
perspective taking in order to reconstruct occluded views
from memory [10].
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Fig. 1. Trajectories of 19 distinct pointing actions of the iCub’s left hand
end-effector retrieved from the autobiographical memory. One can see three
clusters, whereas the blue-coloured cluster originates from pointing actions
to the left, the green-coloured from pointing actions to the right upwards
and the red-coloured right downwards. The computed mean trajectories are
plotted dashed and bold. Figure is best viewed in colour.

In this paper, we present steps towards the emergence of a
procedural memory by clustering annotated self-actions. Thus,
our method first learns templates of actions, then acquires
corresponding labels in a human-robot interaction, and finally
stores the labelled actions in the long-term memory.

II. RELATED WORKS

Our proposed framework is based on the theoretical
paradigm of lifelong machine learning as proposed by Silver
et al. [11]. The authors argued in favour of lifelong memories
to adapt to new situations as these allow employing both
universal and domain specific knowledge. They proposed to
consolidate memories to abstract knowledge from specific
episodes, which results in concepts that can be used as prior
knowledge when learning new tasks.

Dubba et al. [12] proposed a cognitive architecture that
allows learning of higher level concepts after an initial
learning phase where the robot learns to recognise objects.
Their framework allows multiple input sources and the
interaction can take place with non-expert users in relatively
open environments. However, they are only providing a
graphical web-based interface to allow annotations from a
human, despite highlighting that natural language is the most
preferred interface to robots. Our architecture allows such
natural human-robot interactions.

III. ARCHITECTURE AND ANALYSIS

In this section, we briefly review the architecture we
use to store and recall autobiographical memories [7]. We
then provide initial evidence that the data contained in the
memories can be clustered, which subsequently allows on-
the-fly classification of new template actions.



A. Architecture Overview
The central component of the employed framework [7] is a

SQL database, which was designed to store data originating
from various sources in a general manner. The data can cover
multiple modalities (proprioception, vision, language, etc.),
as well as multiple levels of abstraction (e.g. from raw sound
signals over sentences to extracted meanings).

Several interfaces are in place to store, augment and recall
the memories. Action generation modules trigger episodic
events and provide basic annotations. During an episode,
continuous data from specified sensors are acquired through
the input interface. For example, when triggered, the module
responsible for pointing actions indicates the beginning and
end of an action and provides the name (i.e. “pointing”) of
the performed action along with the used parameters. While
the action is performed, proprioceptive and visual information
is stored. The annotations can be used by reasoning modules
(e.g. machine learning algorithms) to retrieve related episodes,
and add augmented data to these original memories.

B. Understanding of Actions
In this section, we provide preliminary results towards un-

supervised understanding of self-actions. The work presented
in this paper allows the robot to form procedural memories
by autonomously discovering higher-level representations of
actions from previous episodes. The labels of the concepts
stored in the procedural memory (i.e. of the action templates)
can then be acquired in human-robot interactions.

In [7], we have shown that a reasoning module can be
used to extract the kinematic structure of the human hand
given an image sequence of a specific episode provided by
the autobiographical memory. In this paper, there are two
key differences. Firstly, we are interested in using data which
was recorded without any specific intention, and thus lacking
annotation by the human. Secondly, rather than augmenting
a single, specific episode, the framework finds patterns in
groups of related episodes. As an example, we use pointing
actions executed with the left hand within this paper.

We analyse these pointing actions, and plot the trajectories
in Fig. 1. The framework uses the Mean Shift algorithm [13]
to find clusters in the data, allowing to detect three clusters
among the 19 pointing gestures of the iCub with the left
hand. The different types of pointing actions that emerge
are: pointing to the left and right (blue and red trajectories
respectively), and pointing right+upwards (green trajectories).
However, the autobiographical memory does not yet contain
this semantic information.

Thus, we extend the human-robot interaction abilities
of [7]1 such that the iCub is able to ask a human to provide
labels of the newly found clusters. After executing motor
commands which correspond to the mean of the motor
commands found in the clusters, the iCub then asks for a label
of this action, which is also used as additional annotation for
the original memories.

1So far, the iCub can a) greet a human, b) remember a unique event with
and without augmented memories, c) remember a subset of events including
active recalling with its body, and d) acquire feedback about the quality of
reasoning results (for more details, see [7]).

Additionally to the in-build action primitives which allow
pointing towards specified coordinates, the iCub has then
discovered commonalities within these pointing actions, which
can be seen as higher-level primitives. Now, the iCub can
“point upwards with your left hand”, “point to the right with
your left hand” and “point to the left with your left hand” in
human-robot scenarios (note that the pointing is irrelevant
of a physical target). We can use the new pointing actions
as building components for hierarchical action learning as
described in [9].

IV. DISCUSSION AND CONCLUSION

We have proposed using the Mean Shift clustering algo-
rithm to gain further insights to already annotated actions.
In our example, an annotation module provided only the
label “pointing” along with the arm used. After the iCub
has found three clusters automatically, it asked a human to
name the template actions, resulting in three distinct labels
discriminating the three pointing actions. Thus, we have
shown how a long term autobiographical memory allows
a-posteriori reasoning, which can be used to learn new action
concepts without conducting specific experiments. This can
be seen as the first step towards the emergence of a procedural
memory. Investigating other types of actions, as well as non-
action related concepts will show how well our method scales
beyond the presented pointing actions. For our future works,
we aim to use the action clusters found on the iCub, and
transfer this knowledge to other robots such as the Baxter.
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